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Abstract: -In this study, the effect of magnetic field on 

poiseuille flow of Bingham plastic fluid model for blood with 

velocity slip and no slip is examined.   In this modeling, an 

interaction of non-Newtonian nature of blood and its flow 

through arteries (aorta, femoral, carotid, coronary and 

arteriole), in presence of wall slip has been attempted. Effort 

has been made to indicate the behavior of flow variation with 

Hartmann number. The application of Magneto dynamics in 

physiological flow problem is of growing interest. The flow of 

blood can be controlled by applying magnetic field. 

Mathematical modeling for poiseuille flow of blood (-a 

Bingham plastic fluid model) with an axial velocity slip along 

an artery wall in presence of magnetic field, is considered. It 

is observed that when Hartmann number increases the fluid 

velocity is greatly affected. The present model includes the 

poiseuille flow models of slip and no slip at artery wall and 

one- layered Bingham plastic fluid model with zero-slip, as 

its special cases. Applications of this theoretical modeling to 

cardiovascular diseases and the role of slip in the better 

functioning of the diseased or occluded arteries are included 

in brief.   

Keywords: Magnetic field, Reynolds number, Hartmann 

number Bingham Plastic Fluid Model, Blood flow 

I. INTRODUCTION 

Blood flow through arteries can be complicated by the 
formation of atherosclerotic plaque the artery wall its 
subsequent advancement impedes the flow through and 
artery. This unwanted growth at vessel wall may ultimately 
affect the wall shear stress distribution [14]. The 
cardiovascular system of man and animals is 
characteristically a branch network of distensible tubes 
which carry blood from the heart to periphery and back 
again [19][4][6] .The primary function of circulation is to 
transport nutrient to tissue and to remove metabolic 
product ,Human blood is a suspension of red cells in a 
continuous and aqueous substance called plasma[10][11]. 
The plasma behaves like a Newtonian fluid with a co-
efficient of viscosity 1.2 centipoises whereas the whole 
blood is shear dependent that is the apparent viscosity of 
whole blood decreases with an increase rate of shear it has 
a infinite yield stress under certain flow condition and the 
viscosity of blood varies with hematocrit and also changes 
with temperature as well as dieses state .At high shear rates 
blood behaves as a Newtonian fluid with constant viscosity 

in larger arteries ,diameter nearly above 1 mm as shear 
stress decreases blood shows a Non  Newtonian character 
[17] and other [13][16],have pointed out that viscosity of 
blood in general and interior viscosity of red cells in 
particular can be in significant factor in pathogenesis of 
ischemia and infraction and may play an important role in 
hypertension and cardiovascular disease[18]. In most of 
the theoretical models on blood flow, usual no slip 
condition at vessel wall is considered[2][3][5][1] have 
suggested the likely presence of a red cell slip at vessel 
wall or in its immediate neighborhood and in view of a 
possible existence of slip at tube wall.[15][12] and other 
have considered a velocity slip condition at blood vessel 
wall or at interface of fluid in their modeling, in the present 
modeling the blood flow through an artery a slip condition 
for velocity at tube wall of five different locations of CVS 
is employed. 

II. MATHEMATICAL FORMULATION OF THE 

PROBLEM 

For one dimensional flow axial velocity = (0, 0,

) the equation for steady tube flow Rr 0   of 

blood (a-Bingham fluid) in 
 zr ,,

co-ordinate system 
reduce to the following form in presence of transverse 
magnetic effect. 
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From which we observed that pressure does not vary in 

the radial ( ,circumferential ( ) and axial  
direction and that pressure remain constant across any 

cross-section of the tube and  Is a function of only  

that is   and so pressure gradient term in the last 

equation above becomes  
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Then equation (3) becomes, 
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We use the following non-dimensional quantities 
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Then equation (4) becomes, 
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Now we will solve the equation (4) 
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Again, shear stress component at any distance r from the 

tube axis is given by 
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Express for wall shear stress  can be obtained from 

the formula  
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In between 0  and w there may arises two cases wall 

shear stress is greater and that yield stress. In case w   0 

that is if
Rr 0  then there will occur no flow accordingly 

velocity function will become  
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Also Bingham equation (7-8) may be described in the 

following form 
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In the above, vanishing of strain rate that is 00 e

implies that  
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which after integration yield to 
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Where 0U
  is the core velocity at   0rr 

 (core 

radius) .As such for blood flow when 
Rr 0  there arises 

two region 00 rr 
and 

Rrr 0  and it is clear for 

region between 0 and  equation representing the flow is 

0
dr

duZ
  00 rr      (17) 

Which after integration give rise to the form  

0UUZ    00 rr 
  indicating the velocity profile 

will become flat in the region and for 
Rrr 0  velocity 

ZU
 will show deviation from flat profile and Bingham 

equation (16) has to be applied for this domain of blood 
flow the same equation it is easily seen that 
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III. SOLUTION OF THE PROBLEM 

In solving equation (18) we have used the following 

velocity slip condition at vessels walls SZ uu 
 at Rr   

(19) 

where  SU
 is the constant slip velocity at tube wall in 

axial distance .As a result of integration between r  and 

R  we have  
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After integrating the above equation (23) we get 
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At 
rr 0 expression for core velocity can be obtained 

from equation (21) 

  04

2
2

rR
MCR

uu e
so 





     (22) 

And for all values of r between 0 and  velocity 

function is so uu 
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      (23) 

Thus from above expression and consideration velocity 

distribution zu
can be re-written in the following manners 
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Where 
)(ruz and 0u

are given in equation (21) and 
(22) respectively  

The rate of volume flow can be found from  
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By integration after using the equation (21), (22) and 
(23) 
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Now,  21 IIQ 
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And expression for apparent viscosity a  can be 
found from the formula 
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And using equation (26), apparent viscosity takes the 
following  
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IV. SPECIAL CASE:  

From equation (24)-(27) velocity representation for 
poiseuille flow of blood (Newtonian fluid) can be 

accordingly obtained with zero slip substitution
0su

 

and taking 
00 

or 
00 r

 

The parabolic velocity profile for poiseuille flow the 
takes the form 
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Employing an axial velocity slip at the tube wall, 
instead of usual no slip in velocity along the wall the 
velocity function for poiseuille flow will takes the form  
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In the aforesaid cases velocity is maximum at the axis 
of the tube and expression for maximum velocity obtained 
from equation (31) and (32) are given by  
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Expression for rate of volume flow Q can be 
accordingly obtained for above two cases in the form  
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V. RESULTS AND DISCUSSIONS 

In the present modeling, blood flow through a uniform 
rigid artery at five different locations of cardiovascular 
system viz., aorta, femoral, carotid, and coronary and 
arteriole, in presence of magnetic effect has been 
considered. For computation of flow variables, relevant 
data indicating tube radius (R)  and its corresponding 
pressure gradient (C) [7] as well as ratio of a critical radius 

r0 to an artery for variations of yield stress, 
 0

0


, is 

included in Table 2.1. Also, in this case, shear stress rz
 

varies linearly with radial distance r and 0r  (critical 
radius) and R (tube radius) are the radial coordinates 

corresponding to the respective yield values 0  and w  of 

the yield stress ( 0 ) for a Bingham fluid. Blood is 
assumed to act like a non-Newtonian fluid possessing a 

finite yield stress viz., a Bingham plastic fluid. There arises 
two distinct cases for this fluid bearing an yield property, 
viz., 

If shear stress rz at a distance is not higher than a 

finite yield stress, blood will not flow and 

If shear stress is not lower than its yield value, blood 
flow will be possible. Analytic expressions for flow 
variables viz., velocity, flow rate, mean velocity, apparent 
viscosity and stresses are obtained. Velocity function, 
expressed in equation (), appears to be a function of radial 
co-ordinate ®, tube radius ®, critical radius (r0), pressure-

gradient ©, Bingham fluid viscosity 
 

 and slip velocity

 s . The present analysis includes Poiseuille flow 
models with the cases of velocity slip and zero-slip at tube 
wall and, steady one-dimensional Bingham plastic fluid 
model with zero-slip at tube wall as its special cases in 
presence of magnetic effect. 

Velocity can be obtained from equation () and its 
variation with Hartmann number M at zero and non-zero 

yield stresses 
 0

0


 for five different locations of 
cardiovascular system viz., aorta, femoral, carotid, 
coronary and arteriole for both cases of slip and no-slip at 
an artery wall is presented graphically in Figures(1..15). 
While doing computation, three values of yield stress 

characterizing zero and non-zero values of 0  (viz., 

)1.0,04.0,00 [19], or, corresponding values of critical 

radius 0r , slip velocity 
1.0su

 cm/sec [19], Bingham 

fluid viscosity 
2

 cm [10] and, tube radius (R), and 
the corresponding pressure gradient (C) (as suggested in 
Sud and Sekhon) [7] from table 2.1, are used. Velocity 
profiles for a full scale of dimensionless radial coordinate 
r/R from the tube axis to vessel wall clearly state that 

This model include poiseuille flow models with 
velocity slip and zero ship at vessel wall and steady one-
dimensional Bingham plastic fluid model with zero wall 
slip, as its special cases. 

Velocity shows distinct behaviour for variation of 
Hartmann number M in different fluid parameter viz., 

yield stress
 0

0


. 

Profiles are parabolic at vanishing yield stress (when 

00 
 or

00 r
) with the maximum velocity at tube 

axis and the minimum one at tube wall in all five locations 
of CVS. 

(i) But for non-vanishing yield stress i.e., for 04.0
0


and 0.10, profiles indicate distinct bluntness near 

the axis i.e., in core region and away from the central 

(core) region, velocity points out a parabolic profile. 
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(ii) These blunted for flat profiles in velocity 
 00 

 

clearly exposes the non-Newtonian nature of blood. 

(iii) As yield stress 0  increases, core region increases. 

(iv) As tube radius decreases (from a larger artery aorta to 

a smaller one coronary), core region decreases. 

However, core region is found to increase in arteriole 

than its immediate larger tube coronary.   

(v) Velocity profile increases when Hartmann number M 

increases in different fluid parameter viz., yield stress

 0
0


. The nature of velocity profile is also same 

in no slip.  

(vi) Analysis developed here is based on certain 

assumptions which may lead to some physiological 

implications viz., (a) Flow is assumed steady which is 

indeed true for very thin arteries in CVS where the 

pulsatility effects are small. (b) Assumption that 

velocity variation in axial direction is negligible as 

compared to its variation in radial direction, may lead 

to the implication that the length of the artery is too 

large as compared to the radius. 
 

In this modeling, an interaction of non-Newtonian 
nature of blood and its flow through arteries (aorta, 
femoral, carotid, coronary and arteriole), in presence of 
wall slip has been attempted. Effort has been made to 
indicate the behavior of flow variation with Hartmann 
number M. Biswas [3], Chaturani and Biswas [19] and, 
Prahlad and Schultaz [9] and others have already reported 
that flow variables like velocity profiles, flow rate, shear 
stresses, apparent viscosity etc. could take an important 
role in the fundamental understanding and development of 
cardiovascular, cerebrovascular, arterial and other diseases. 
It is therefore essential from the physiological point of 
view, to propose a more appropriate model for measuring 
the flow variables more accurately. In the analysis, a 
constant slip and its arbitrary value as well as arbitrary 
variation of fluid property n are taken. It is observed that 
when Hartmann number increases the fluid velocity is 
greatly affected. The mathematical expressions may help 
medical practitioners to control the blood flow of a patient 
whose blood pressure is very high, by applying certain 
magnetic field. This analysis could be improved if an 
appropriate measure of velocity slip and fluid property, in 
accordance with cell concentration and artery diameter, are 
include in the modeling.  

 

 

 

 

 

 

VI. CONCLUSION 

In this paper we have attempted to study the behaviour 
of poiseuille flow of Bingham plastic fluid model for blood 
flow with velocity in presence of magnetic effect.  A 
steady one-dimensional flow of blood (-a Bingham fluid) 
subject to the boundary conditions of velocity slip, 
suggested in the models of Biswas [3], Chaturani and 
Biswas [19] and, Prahlad and Schultaz [9], for five 
different locations of CVS, in presence of magnetic effect 
is investigated. Analytic expressions for velocity, flow 
rate, shear stress at wall, yield stress and apparent viscosity 
are presented. Axial velocity appears to be a function of 
pressure gradient C, radial coordinate r, tube semi-

diameter R, critical radius 0r  (or yield stress 0 ), Bingham 

fluid viscosity a  and su
 axial velocity slip at the 

boundary.  

Important observations of the present model include 
the following: 

i) If shear stress rz at a distance is not higher than a 

finite yield stress, blood will not flow and 

ii) If shear stress is not lower than its yield value, 

blood flow will be possible.  

iii) The present model includes Poiseuille flow 

models with velocity slip and zero ship at vessel 

wall and steady one-dimensional Bingham 

plastic fluid model with zero wall slip, as its 

special cases. 

iv) Flow variables indicate distinct behaviour for 

vanishing and non-vanishing yield stress. 

v) Flow variables indicate distinct behaviour for 

different Hartmann number at different yield 

stress. 

vi) Velocity profiles indicate a parabolic profile in 

all five arteries and for slip and no-slip cases 

with the usual maximum magnitude at tube axis 

and a minimum velocity at the boundary in case 

of vanishing yield stress. 

vii) Velocity profiles indicate distinct bluntness near 

the axis for all five locations i.e., aorta, femoral, 

carotid, coronary and arteriole in CVS for non-

vanishing yield stress. Therefore, non-Newtonian 

character of blood is clearly revealed in all five 

cases of CVS and this blunted or non-parabolic 

profile is found prominent with an increasing 

tube radius or with an increasing yield stress. 

viii) Flow in the central region shows a flat profile for 

non-zero yield stress. Core region increases with 

an increase in yield stress and with an increase in 

tube radius. 

ix) Velocity profile increases when Hartmann 

number M increases in different fluid parameter 

viz., yield stress  0
0
 . The nature of velocity 

profile is also same in no slip.  
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Theoretical analysis developed in this model, is based 
on the certain assumption which may result some 
physiological implications as follows: 

i) Blood flow is assumed to be steady which is 

obviously true for very thin arteries in CVS wherein 

the pulsatile effects are small and so, these effects can 

be ignored. 

ii) Further, velocity variation in axial direction is 

negligible as compared to its variation in radial 

direction, may lead to the implication that the length 

of the artery is too large as compared to the radius. 
 

In this study, the effect of magnetic field on poiseuille 
flow of Bingham plastic fluid model for blood with 
velocity slip and no slip is examined. The application of 
Magneto dynamics in physiological flow problem is of 
growing interest. The flow of blood can be controlled by 
applying magnetic field. Mathematical modeling for 
poiseuille flow of blood (-a Bingham plastic fluid model) 
with an axial velocity slip along an artery wall in presence 
of magnetic field, is considered. It is observed that when 
Hartmann number increases the fluid velocity is greatly 
affected. The present model includes the poiseuille flow 
models of slip and no slip at artery wall and one- layered 
Bingham plastic fluid model with zero-slip, as its special 
cases. Applications of this theoretical modeling to 
cardiovascular diseases and the role of slip in the better 
functioning of the diseased or occluded arteries are 
included in brief.   

Table 2.1. Data for five different locations in Cardiovascular 

System (CVS) 

 

S. No. Name of 

an artery 

Radium 

(R*) 

x 10-2m 

Pressure gradient (C*) 

x 10 kg. m-2.s-2 

r0/R** 

    00.00 
 

04.0
0


 
10.00 

 
01 Aorta 1.00 1.46 0.0000 0.0548 0.1370 

02 Femoral 0.50 6.40 0.0000 0.0250 0.0625 

03 Carotid 0.40 10.00 0.0000 0.0200 0.0500 

04 Coronary 0.15 139.74 0.0000 0.0038 0.0095 

05 Arteriole 0.008 400.00 0.0000 0.0250 0.0625 

 

Sud and Sekhon (1985) 

Present modeling (2001) 
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Fig. 1. Variation of velocity profiles Uz with Hartmann number M in Aorta when T0=0
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Variation of velocity profiles Uz with Hartmann number in Aorta when T0=0.04

0

1

2

3

4

5

6

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Uz ---->

r/
R

 -
--

->

M=0.00

M=1.00

M=2.00

M=3.00

M=4.00

M=5.00

M=6.00

M=7.00

M=8.00

M=9.00

M=10.00



Asian Journal of Technology & Management Research [ISSN: 2249 –0892]              Vol. 05 – Issue: 01 (Jan - Jun 2015) 

64 

 

 

 

Fig. 3. Variation of velocity profiles with Hartmann number M when T0=0.10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Uz--->

r/
R

 -
--

>

M=0.00

M=1.00

M=2.00

M=3.00

M=4.00

M=5.00

M=6.00

M=7.00

M=8.00

M=9.00

M=10.00

Fig. 4. Varation of velocity profiles Uz with Hartmann number M in femoral when T0=0
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Fig. 5. Variation of Velocity profiles Uz with Hartmann number in Femoral when T0=0.04
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Fig. 6. Variation of velocity profiles Uz with Hartmann number M at femoral when T0=0.10 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Uz --->

r/
R

 -
--

>

M=0.00

M=1.00

M=2.00

M=3.00

M=4.00

M=5.00

M=6.00

M=7.00

M=8.00

M=9.00

M=10.00



Asian Journal of Technology & Management Research [ISSN: 2249 –0892]              Vol. 05 – Issue: 01 (Jan - Jun 2015) 

66 

 

 

 

Fig. 7. Variation of velocity profiles Uz with Hartmann number M at Carotid when T0=0
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Fig. 8. Variation of Velocity profiles Uz with Hartmann number M at Carotid when T0=0.04
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Fig. 9. Variation of velocity profiles Uz at Hartmann number M at Caritod when T0=0.10
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Fig. 10. Variation of velocity profiles Uz at Hartmann number M at Coronary when T0=0
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Fig. 11. Variation of velocity profiles Uz with Hartmann number M at Caritod when T0=0.04
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Fig. 12. Variation of velocity profiles Uz with Hartmann number M at Caritod when T0=0.10
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Fig. 13. Variation of velocity profiles Uz with Hartmann number M at Arteriole when T0=0
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Fig. 14. Variation of velocity profiles Uz with Hartmann number M at Arteriole when T0=0.04
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Fig. 15. Variation of velocity profiles Uz with Hartmann number M at Arteriole when T0=0.10

0.094

0.096

0.098

0.1

0.102

0.104

0.106

0.108

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Uz --->

r/
R

 -
--

>

M=0.00

M=1.00

M=2.00

M=3.00

M=4.00

M=5.00

M=6.00

M=7.00

M=8.00

M=9.00

M=10.00


